第6部分(第1/4 页)
��玫搅丝刂啤�
生命之路漫漫
明亮的星啊,我愿像你一样坚定。
——约翰·济慈(JOhn Eeats)
太阳中心释放的能量作为光子(光粒子)辐射出来,然而光子要经过漫长的路程才能到达太阳表面并逃逸到行星际空间,在那里吹动若星的尾巴,加热行星的冰冷外壳。与人们的直觉相反,虽然光子的速度将近30万公里/秒,而太阳的半径是70万公里,从太阳中心发出的光子到达表面的时间却并不是2.3秒。平均说来那些光子得花1000万年才能走完这段路程。我们在地球上现在收到的阳光,是8分钟前离开太阳表面的,但是它从太阳核。已产生之时,猿类和早已灭绝的柱牙象还在非洲行走,而非洲与欧亚大陆还不相连。
理由很简单:光子在恒星内部并不沿直线运动,而是由于与无数电子的碰撞而不断地改变路径(电子与质子同为恒星物质的主要成分)。假如太阳核心现在突然熄灭,阳光在今后1000万年里仍将继续照亮地球。
因此,恒星的生命历程极为规则。天空中的几乎所有星星,无论是用肉眼还是用望远镜看到的,都是与太阳类似的恒星,它们的核心正熊熊燃烧着氢。这种极稳定的状态长达恒星整个核反应寿命的四%,并被称为主序(见附录1)。我们的太阳已经平静地处在主序态上50亿年了,不停地把它的氢转变成氦,它的生命之路正好走了一半。
红色的赞美诗
然而,太阳的“恒定”演化终将结束,熊熊烈火将变为余烬,并完全熄灭。当所有的氢都变成了氦时,核心的火就没有燃料来维持,恒星在主序阶段的平静日子就到了尽头,大动荡的时期来到了。
一巨燃料用光,热核反应的速率立即剧减,引力与辐射压之间的平衡被打破,引力占了上风。有着氦核和氢外壳的恒星,在自身的重力下收缩,压强、密度和温度都随之升高,于是恒星外层尚未动用过的氢开始燃烧,外壳开始膨胀(而核心区在收缩)。
通过自然界精巧的炼金术,许多元素都能由热核反应而变成别的元素。但是,由于较重的核带有更多的正电荷,它们之间的相互排斥就比质子之间要强(质量越大的原子,其核中的质子越多,电荷也就越多。原子核里还有一种不带电的粒子,称为中子,见第6章)。相应地,重核就必须有非常高的速度才能克服电斥力而聚合,也就是说,它们的转变需要的温度高于1500万开氏度。
在1亿度的高温下,恒星核区的氨原子核能聚变成碳原子核,每3个氦核变成1个碳核,碳核又能再捕获别的氦核而形成氧核。这些新反应的速度完全不同于缓慢的氢聚变。它们像闪电一样快地突然起爆(故被称为“氦闪耀”),而恒星不得不尽可能地相应调整自己的结构。大约经过100万年后,核能量的流出稳定下来。在此后的几亿年里,恒星又得到暂时的平稳,核区的氦在消耗,而氢的燃烧则越来越向更外层推进。但是,这个调整是要代价的,这时的恒星将膨胀得极大,远胜过寓言里的怪物,以使自己的结构适应于光度的增大。它的体积将增大10亿倍。在这个过程中恒星的颜色会改变,因为其外层与高温的核心区相距很远,温度就低了下来。这种状态的恒星称为红巨星。
尽管表面温度很低,红巨星却极为明亮,因为它们的体积巨大。肉眼能看到的最亮的星有许多是红巨星,参宿四、毕宿五、大角、心宿工,就是其中几例。太阳自己也将在50记或60亿年里变成一个红色“巨兽”。当核心的氢燃完时,太阳就将开始膨胀,距它20万公里的小行星水星将化为蒸气,金星的大气将被吹光,地球上的海洋都将沸腾。然后太阳还会继续膨胀,并把地球吞没,因为太阳在其红巨星阶段的最大半径将超过目前地球公转轨道半径(1.5亿公里)。地球那被烧焦的残骸将继续在巨太阳灼热而极稀薄的大气里转圈子,红巨星外层物质的密度比地球实验室里能得到的最好真空还要低得多。第五章 灰烬与钻石
红巨星远不是恒星一生的终结。引力现在变得比以往更为重要。一个恒星的命运是完全由其质量决定的(至少对单颗星是如此,双星的情况则还有别的因素起作用,这将在以后讨论),质量越大的恒星演化得越快,核燃料也就消耗得越快。太阳的整个热核反应阶段约是120亿年,质量10倍于太阳的恒星,核阶段就要短1000倍。另外,核反应的产物也不一样。质量最大的恒星里产生出最重的元素,这一点将在下一章 中再谈。现在先来看看像太阳这样质量较适中的恒