第4部分(第1/4 页)
常简明的综合和概括。
14.相对论的启发作用
我们在前面各节的思路可概述如下。经验导致这样的论断,即一方面相对性原理是正确的,另一方面光在真空中的传播速度必须认为等于恒量c。把这两个公设结合起来我们就得到有关构成自然界过程诸事件的直角坐标x;y;z和时间t在量值上的变换定律,关于这一点,与经典力学不同,我们所得到的不是伽利略变换,而是洛伦兹变换。
在这个思考过程中,光的传播定律——这是根据我们的实际知识有充分理由加以接受的一个定律——起了重要的作用。然而一旦有了洛伦兹变换,我们就可以把洛伦兹变换和相对性原理结合起来,并将得出的理论总括如下:
每一个普遍的自然界定律必须是这样建立的,若我们引用新的坐标系K’的空时变量x';y';z';t'来代替原来的坐标系K的空时变量x;y;z;t;则经过变换以后该定律仍将取与原来完全相同的形式。这里,不带撇的量和带撇的量之间的关系就由洛伦兹变换公式来决定。或简言之,普遍的自然界定律对于洛伦兹变换是协变的。
这是相对论对自然界定律所要求的一个明确的数学条件。因此,相对论在帮助探索普遍的自然界定律中具有宝贵的启发作用。反之,如果发现一个具有普遍性的自然界定律并不满足这个条件的话,就证明相对论的两个基本假定之中至少有一个是不正确的。现在让我们来看一看到目前为止相对论已确立了哪些普遍性结果。
15.狭义相对论的普遍性结果
我们前面的论述清楚地表明,(狭义)相对论是从电动力学和光学发展出来的。在电动力学和光学的领域中,狭义相对论对理论的预断井未作多少修改;但狭义相对论大大简化了理论的结构,亦即大大简化了定律的推导,而且更加重要得多的是狭义相对论大大减少了构成理论基础的独立假设的数目.狭义相对论使得麦克斯韦一洛伦兹理论看来好象很合理,以致即使实验没有明显地予以支持,这个理论也能力物理学家普遍接受。
经典力学需要经过修改才能与狭义相对论的要求取得一致。但是此种修改大体上只对物质的速度。比光速小得不多的高速运动定律有影响。我们只有在电子和离于的问题上才能遇到这种高速运动;对于其他运动则狭义相对论所得结果与经典力学定律相差极微,以致在实践中此种差异未能明确地表现出来。在我们未开始讨论广义相对论以前,将暂不考虑星体的运动。按照相对论,具有质量m的质点的动能不能再由众所周知的公式来表达,而是应由另一公式来表达。当速度v趋近于光速c时,此式趋近于无穷大。因此,无论用于产生加速度的能量有多大,速度v必然总是小于c。若将动能的表示式以级数形式展开,即得
若与1相比时相当微小,上式第三项与第二项相比也总是相当微小,所以在经典力学中一般不予计入而只考虑其中的第二项。第一项并不包含速度v,若我们只讨论质点的能量如何依速度而变化的问题,这一项也就无需加以考虑。我们将在以后再叙述它的本质上的意义。
狭义相对论导致的具有普遍性的最重要的结果是关于质量的概念。在相对论创立前,物理学确认两个具有基本重要性的守恒定律,即能量守恒定律和质量守恒定律;过去这两个基本定律看来好象是完全相互独立的。借助于相对论,这两个定律己结合为一个定律。我们将简单地考察一下此种结合是如何实现的,并且会具有什么意义。
按照相对性原理的要求,能量守恒定律不仅对于坐标系K是成立的,而且对于每一个相对于K作匀速平移运动的坐标系K’也应当是成立的,或简言之,对于每一个“伽利略”坐标系都应该能够成立,与经典力学不同,从一个这样的坐标系过渡到另一个这样的坐标系时,洛伦兹变换是决定性的因素。
通过较为简单的探讨,我们就可以根据这些前提并结合麦克斯韦电动力学的基本方程得出以下结论,若一物体以速度v运动,以吸收辐射的形式吸收了相当的能量E0,在此过程中并不变更它的速度,则该物体因吸收而增加的能量将为
考虑上述的物体动能表示式,就得到所求的物体的能量为
这样,该物体所具有的能量就与一个质量为并以速度U运动的物体所具有的能量一样。因此我们可以说。若一物体吸收能量E0,则其惯性质量亦应增加一个的量;可见物体的惯性质量并不是一个恒量,而是随物体的能量的改变而改变的。甚至可以认为一个物系的惯性质量