第4部分(第1/4 页)
嫔系闹毕撸�囱刈糯笤玻┰硕����苁谴酉喾捶较蛏匣氐匠龇⒌恪R虼耍�蛎媸怯邢薜模�蛘咚捣獗盏模�」芩�挥兄占��挥斜呓纾ù笤彩敲挥兄斩说模�G蛎嬲�蔷哂腥魏挝��挠邢蘅占涞睦硐朐�停ㄓ捎谧宰�⒌匦渭俺毕�纫蛩兀�厍虮砻娌皇蔷�返那蛎妫�����哂猩鲜鲂灾剩��
现在来考查一下负曲率空间的情况。为简单起见,限于二维,典型的例子是双曲面,形如马鞍。如果也沿着这个面上的一条直线运动,一般说来不会再返回出发点,而是无限地远离。像平面一样,双曲面也是开放面,但仅此而已。作为一个曲面,双曲面根本不再是欧几里德型的。
大多数曲面并不像球面或双曲面那样具有处处都为正或为负的曲率,而是曲率值逐点变化,正负号在面上不同区域也会改变。
几何与物质
物质所在,几何所在(Ubi materia,ibi geometria)。
——约翰斯·开普勒(JOhaunes Kopler)
我们现在来考虑广义相对论的四维几何。重要的是,时空是弯曲的,而不仅是空间。黎曼曾试图以弯曲空间来使电磁学和引力相和谐,他之所以未成功,是因为没有扭住时间的“脖子”。
设想我们把石块掷向地面上10米外的靶子。在地球引力作用下石块将沿连接出手处和靶子的抛物线飞行,其最大高度取决于初始速度。如果石块以10米/秒的速度掷出,并将用1.5秒钟落到目标,则其最大高度为3米。如果改成用枪射击,且子弹初速为500米/秒,则子弹将沿高为0.5毫米的弧线用0.02秒钟击中目标;如果子弹被射到12公里高的空中再落到靶子上(忽略空气的影响和地球自转),它的总飞行时间就大约是100秒。由此推至极限,也可以用速度为3
0公里/秒的光线来射靶子,这时的轨道弯曲变得难以觉察,几乎成了一条直线。显然,所有这些抛物线的曲率半径各不相同。
现在加进时间维度(图14b)。无论对石块、于弹还是光子,在时空中量度的曲率半径都精确地相等,其值为1光年的星级。因此,更合理的说法是,时空轨道是“直”的,而时空本身被地心引力所弯曲,不受任何其他力的抛射体将沿测地线运动(等价于说沿弯曲几何中的直线运动)。
上面的例子表明时空是怎样在时间上弯曲得比在空间上厉害得多的。一旦所涉及的速度开始增大,时间曲率就变得重要。公路上凸起了一小块,只是空间曲率的一点小小不整齐,一个徒步慢行的人很难觉察到,但对一辆以120公里/小时的速度行驶的汽车来说却很危险,因为它造成时间维度上大得多的变化。
阿瑟·爱丁顿(Arthur Eddington)计算出,l吨的质量放在一个半径为5米的圆中心所造成的空间曲率改变,仅仅影响圆周与直径比值(即欧几里德几何中的…的小数点后第24位。
因此,要给时空造成可观的变化,就得有巨大的质量。地球表面的时空曲率半径如此之大(约1光年,即其自身半径的10亿倍)的事实说明地球的引力场,尽管给物体以98米/秒’的加速度,却是不够强的。对于地球附近的绝大多数物理实验,我们可以继续采用明可夫斯基时空和狭义相对论;欧几里德空间和牛顿力学在涉及的速度较小时也足够精确。
尽管局域地看来似乎平直,我们的宇宙实际上是被物质弄弯曲了。然而,弯曲效应变得明显仅仅是在高度集中的质量附近(例如黑洞),或者是在很大的尺度上(数百万光年,例如研究对象是由数千个星系组成的团)。最近发现的多重类星体是弯曲时空真实性的一个最好证据。一个遥远光源发出的光线沿不同路径穿过弯曲时空,使天文学家看到同一个天体的几个像
柔软的光
光……更多的光!
——歌德(Goethe)最后的话(1832)
狭义相对论时空的刚性结构也像牛顿空间一样被引力的冲击完全破坏了。时空连续体变得柔软了,被它所包含的物质扭曲了,而物质又按照它的弯曲而运动。
不过,光线的轨迹仍然是沿着最短路径。这个时空“软体”的结构仍然是由光编织的,广义相对论的本质也仍能由光锥来表示出来。
另一种使弯曲时空及其对物质的影响形象化的有用办法是用一块橡皮片。设想将时空的一部分缩减成二维,且由弹性材料构成。在没有任何别的物体时,橡皮保持平直。如果把一个球放在它