第7部分(第1/4 页)
英国科学家拉尔夫·富勒(RalPh Fowler)第一个把量子力学应用于天体物理。他在1925年提出,一个没有内部辐射压的恒星的引力收缩能够迫使所有电子占据所有可能的鼻子态,因而白矮星的收缩能被电子的简并压阻止。
紧随其后,威廉·安德森(William Anderson)证明,当密度超过每立方厘米1吨时,电子的速度接近光速。这时的电子被称为相对论性的,其运动服从狭义相对论,而不再是伽利略力学。由量子力学知道,对一个给定密度,相对论性粒子产生的压力比慢粒子的要小。这正是白矮星不可能具有任意大质量的根本原因。
这个导致理论天体物理革命性变化的重大发现是由印度天体物理学家苏伯拉赫曼彦·钱德拉塞卡(SubrahmanyanChandrasekhar)作出的。在1931年的一篇著名论文中,他证明白矮星有一个最大允许的质量,并计算出来是1.4Mde这个结果引起了一场激烈的争论。爱丁顿斥之为荒谬,因为它意味着那些质量远大于太阳的恒星的命运变得秘不可知(钱德拉塞卡也有许多关于那些超常恒星内部结构的重要论文。他后来还同样成功地解决了许多别的天体物理问题,并获得了1983年的诺贝尔奖),然而钱德拉塞卡是正确的。按照当今的计算,诞生时质量高到SM的恒星仍能形成质量为1.4M。的白矮星,因为那些星在其~生中以星风的形式丢失掉如此多的物质,以至于其质量减小到钱德拉塞卡限度以下。质量更大的恒星的命运将在后面介绍预言中子星和黑洞存在的理论时予以阐述。
热的与冷的
白矮星,中等质量恒星演化的终点,在银河系中到处都能见到。估计它们目前占恒星总数的10%(即约100亿颗),而这个百分比只会随时间增大。
这一百亿颗白矮星中,只有几千颗已被记录在第。它们的光度非常低,只有那些最靠近我们的才能被探测到。寻找孤立自矮星的方法之一是研究自行很大,因而是距离较近的恒星,摄取它们的光谱以确定其颜色,再由它们在光度一颜色图(见附录1)上的位置就可以确凿地判定是白矮星或走低质量恒星。
让我们再进一步看看白矮星。它的质量越大(直到1.4Mk)的上限,半径就越小,因为引力有利于简并物质的收缩和压紧。在白矮星内,原子结构被破坏了,电子脱离了原子核的束缚,自由地在“简并海”中运动。尽管电子已极其密集,仍然有很多空间,原子核仍相互离得很远,与其本身大小相比,核的行为仍像空气中的分子。
白矮星的物理结构主要决定于电子海的情况,而热结构则决定于原子核的运动。由于简并电子是热的优良导体,整个白矮星内部就像一块炽热的金属。新形成的白矮星内部温度达到开氏1亿度,老的白矮星则降到几百万度。虽然温度如此之高,热能仍远小于电子的静质量能量。这表明温度对保持白矮星平衡的作用是微不足道的。事实上,尽管白矮星的温度比太阳还高,仍可正确地把它作为绝对零度来处理。
处在寒冷的星际空间,白矮星内部是由一个厚度为几公里的薄层来保护的,这个薄层是很不透明的、高度绝缘的,由温度低于10万度的非简并物质组成。这个温度虽比太阳表面高10倍,但由于发射面积很小,总光度也就很低,白矮星就成了很难在远距离上探测到的阴暗幽灵。
结晶成黑矮星
由于没有热核反应来提供新能量,白矮星在发出辐射的同时,也以同样速率冷却。但是,白矮星本性节俭,它在形成后要经过数十亿年的冷却时间。起初,非简并的原子核像普通气体中的分子一样自由运动,它们的动能决定着温度。由于辐射,动能逐渐丢失,这样,一个关键时刻终将到来,那就是核的剩余动能已小于其静电能,核就会被囚禁在一个刚性结构里。运动逐渐慢下来,核组成为一种晶格,而简并电子继续在晶格中自由运动。年老的白矮星最终停止了辐射,变成一个比钻石还要硬的巨大晶体,这就是黑矮星。
白矮星的变暗过程是如此之慢,自70亿年前宇宙划生和第~批恒星出现以来,恐怕还没有一个黑矮星形成,这里需要极大的耐心。太阳现正处在其主序阶段的中点,还要经过50亿年才到行星状星云那样的“高龄”,它将再短暂地活跃10万年,然后成为一颗白矮星并在100亿年中缓慢地死去,最后作为一颗黑矮星而永存。
再度辉煌
像太阳这样的单个恒星是少数,银河系里的恒星多数都以双星方式存在。还