第40部分(第1/4 页)
笫鞘焙颍�暇瓜喽月垡彩且桓鼍�闷鹂佳榈奈按罄砺邸! �
我们沿着这条路走来,但是它当初许诺给我们的那个美好蓝图,那个爱因斯坦式的理想却在实验的打击下终于破产。也许我们至少还保有实在性,但这不足以吸引我们中的许多人,让他们付出更多的努力和代价而继续前进。阿斯派克特实验严酷地将我们的憧憬粉碎,它并没有证明量子论是对的(它只是支持了量子论的预言,正如我们讨论过的那样,没什么理论可以被〃证明〃是对的),但它无疑证明了爱因斯坦的世界观是错的!事实上,无论量子论是错是对,我们都已经不可能追回传说中的那个定域实在的理想国,而这,也使我们丧失了沿着该方向继续前进的很大一部分动力。就让那些孜孜不倦的探索者继续前进,而我们还是退回到原来的地方,再继续苦苦追寻,看看有没有柳暗花明的一天。
*********
饭后闲话:超光速
EPR背后是不是真的隐藏着超光速我们仍然不能确定,至少它表面上看起来似乎是一种类似的效应。不过,我们并不能利用它实际地传送信息,这和爱因斯坦的狭义相对论并非矛盾。
假如有人想利用这种量子纠缠效应,试图以超光速从地球传送某个消息去到半人马座α星(南门二,它的一颗伴星是离我们地球最近的恒星,也即比邻星),他是注定要失败的。假设某个未来时代,某个野心家驾驶一艘宇宙飞船来到两地连线的中点上,然后使一个粒子分裂,两个子粒子分别飞向两个目标。他事先约定,假如半人马星上观测到粒子是〃左旋〃,则表示地球上政变成功,反之,如是〃右旋〃则表示失败。这样的通讯建立在量子论的这个预测上:也就是地球上观测到的粒子的状态会〃瞬间〃影响到遥远的半人马星上另一个粒子的状态。但事到临头他却犯难了:假设他成功了,他如何确保他在地球上一定观测到一个〃右旋〃粒子,以保证半人马那边收到〃左旋〃的信息呢?他没法做到这点,因为观测结果是不确定的,他没法控制!他最多说,当他做出一个随机的观测,发现地球上的粒子是〃右旋〃的时候,那时他可以有把握地,100%地预言遥远的半人马那里一定收到〃左〃的信号,虽然理论上说两地相隔非常遥远,讯息还来不及传递过来。如果他想利用贝尔不等式,他也必须知道,在那一边采用了什么观测手段,而这必须通过通常的方法来获取。这一切都并不违反相对论,你无法利用这种〃超光速〃制造出信息在逻辑上的自我矛盾来(例如回到过去杀死你自己之类的)。
在这种原理上的量子传输(teleportation)事实上已经实现。我国的潘建伟教授在此领域多有建树。
2000年,王力军,Kuzmich等人在Nature上报道了另一种〃超光速〃(Nature V406),它牵涉到在特定介质中使得光脉冲的群速度超过真空中的光速,这本身也并不违反相对论,也就是说,它并不违反严格的因果律,结果无法〃回到过去〃去影响原因。同样,它也无法携带实际的信息。
其实我们的史话一早已经讨论过,德布罗意那〃相波〃的速度c^2/v就比光速要快,但只要不携带能量和信息,它就不违背相对论。相对论并非有些人所想象的那样已被推翻,相反,它仍然是我们所能依赖的最可靠的基石之一。
四
这已经是我们第三次在精疲力竭之下无功而返了。隐变量所给出的承诺固然美好,可是最终的兑现却是大打折扣的,这未免教人丧气。虽然还有玻姆在那里热切地召唤,但为了得到一个决定性的理论,我们付出的代价是不是太大了点?这仍然是很值得琢磨的事情,同时也使得我们不敢轻易地投下赌注,义无反顾地沿着这样的方向走下去。
如果量子论注定了不能是决定论的,那么我们除了推导出类似〃坍缩〃之类的概念以外,还可以做些什么假设呢?
有一种功利而实用主义的看法,是把量子论看作一种纯统计的理论,它无法对单个系统作出任何预测,它所推导出的一切结果,都是一个统计上的概念!也就是说,在量子论看来,我们的世界中不存在什么〃单个〃(individual)的事件,每一个预测,都只能是平均式的,针对〃整个集合〃(ensemble)的,这也就是〃系综解释〃(the ensemble interpretation)一词的来源。
大多数系综论者都喜欢把这个概念的源头上推到爱因斯坦,比如John Taylor,或者加拿