会员书架
首页 > 游戏竞技 > 量子物理史话适合高中生看吗 > 第17部分

第17部分(第1/4 页)

目录
最新游戏竞技小说: 我!开局三个天赋技能太多了SS级天赋,代价是变成女生?领主:我愿建立一方乐土王屠霸业心火沸腾你为什么不打篮球?球神双职业,无限重置,阁下如何应对LOL:我真不是演员啊!第四天灾:玩家对抗玩的就是真实足球教练,我选择国足全民巨鱼求生:我能听到巨鱼心声霸球道绽放于冬网游三国:从南海开始,虎视天下网游大神饶了我规则怪谈:贫僧唐三藏,百无禁忌!我的世界之开局无限资源火影之我在木叶砸金蛋

媚敲锤丛樱�膊挥靡�胪獠康募偕瑁�灰�盐颐堑牡缱涌闯傻虏悸抟獠ǎ�靡桓霾ǘ�匠倘ケ硎舅��蔷托辛恕�

薛定谔一开始想从建立在相对论基础上的德布罗意方程出发,将其推广到束缚粒子中去。为此他得出了一个方程,不过不太令人满意,因为没有考虑到电子自旋的情况。当时自旋刚刚发现不久,薛定谔还对其一知半解。于是,他回过头来,从经典力学的哈密顿…雅可比方程出发,利用变分法和德布罗意公式,最后求出了一个非相对论的波动方程,用希腊字母ψ来代表波的函数,最终形式是这样的:

△ψ+'8(π^2)m/h^2' (E … V)ψ = 0

这便是名震整部20世纪物理史的薛定谔波函数。当然对于一般的读者来说并没有必要去探讨数学上的详细意义,我们只要知道一些符号的含义就可以了。三角△叫做“拉普拉斯算符”,代表了某种微分运算。h是我们熟知的普朗克常数。E是体系总能量,V是势能,在原子里也就是…e^2/r。在边界条件确定的情况下求解这个方程,我们可以算出E的解来。

如果我们求解方程sin(x)=0,答案将会是一组数值,x可以是0,π,2π;或者是nπ。sin(x)的函数是连续的,但方程的解却是不连续的,依赖于整数n。同样,我们求解薛定谔方程中的E,也将得到一组分立的答案,其中包含了量子化的特征:整数n。我们的解精确地吻合于实验,原子的神秘光谱不再为矩阵力学所专美,它同样可以从波动方程中被自然地推导出来。

现在,我们能够非常形象地理解为什么电子只能在某些特定的能级上运行了。电子有着一个内在的波动频率,我们想象一下吉他上一根弦的情况:当它被拨动时,它便振动起来。但因为吉他弦的两头是固定的,所以它只能形成整数个波节。如果一个波长是20厘米,那么弦的长度显然只能是20厘米、40厘米、60厘米……而不可以是50厘米。因为那就包含了半个波,从而和它被固定的两头互相矛盾。假如我们的弦形成了某种圆形的轨道,就像电子轨道那样,那么这种“轨道”的大小显然也只能是某些特定值。如果一个波长20厘米,轨道的周长也就只能是20厘米的整数倍,不然就无法头尾互相衔接了。

从数学上来说,这个函数叫做“本征函数”(Eigenfunction),求出的分立的解叫做“本征值”(Eigenvalue)。所以薛定谔的论文叫做《量子化是本征值问题》,从1926年1月起到6月,他一连发了四篇以此为题的论文,从而彻底地建立了另一种全新的力学体系——波动力学。在这四篇论文中间,他还写了一篇《从微观力学到宏观力学的连续过渡》的论文,证明古老的经典力学只是新生的波动力学的一种特殊表现,它完全地被包容在波动力学内部。

薛定谔的方程一出台,几乎全世界的物理学家都为之欢呼。普朗克称其为“划时代的工作”,爱因斯坦说:“……您的想法源自于真正的天才。”“您的量子方程已经迈出了决定性的一步。”埃仑费斯特说:“我为您的理论和其带来的全新观念所着迷。在过去的两个礼拜里,我们的小组每天都要在黑板前花上几个小时,试图从一切角度去理解它。”薛定谔的方程通俗形象,简明易懂,当人们从矩阵那陌生的迷宫里抬起头来,再次看到自己熟悉的以微分方程所表达的系统时,他们都像闻到了故乡泥土的芬芳,有一种热泪盈眶的冲动。但是,这种新体系显然也已经引起了矩阵方面的注意,哥廷根和哥本哈根的那些人,特别是海森堡本人,显然对这种“通俗”的解释是不满意的。

海森堡在写给泡利的信中说:

“我越是思考薛定谔理论的物理意义,就越感到厌恶。薛定谔对于他那理论的形象化的描述是毫无意义的,换一种说法,那纯粹是一个Mist。”Mist这个德文,基本上相当于英语里的bullshit或者crap。

薛定谔也毫不客气,在论文中他说:

“我的理论是从德布罗意那里获得灵感的……我不知道它和海森堡有任何继承上的关系。我当然知道海森堡的理论,它是一种缺乏形象化的,极为困难的超级代数方法。我即使不完全排斥这种理论,至少也对此感到沮丧。”

矩阵力学,还是波动力学?全新的量子论诞生不到一年,很快已经面临内战。

回顾一下量子论在发展过程中所经历的两条迥异的道路是饶有趣味的。第一种办法的思路是直接从观测到的原子

目录
从一曲广陵散开始玩爆演艺圈强宠弟君 潇湘VIP全本情不厌诈以吾爱换汝喜(完结)作者:留遗极品猥琐帝系统之金手指
返回顶部