第13部分(第2/4 页)
眼的人,她把我怕给博士添乱而基本从未动过的书房里的数学书,全部摆上了书架,摆不下的就摆到衣柜上面或者塞到沙发底下一点点的空间里。而且分类的标准就只有一个,就是开本大小。不错,乍然看去,确实显得整整齐齐,然而长年以来自然形成的隐藏在混沌中的秩序,却也被破坏得干干净净。
我突然有些担心,开始寻找装着棒球卡的那个饼干盒。它现在放得离原来的架子不远,被用来调整书的高低了。里面的江夏丰也平安无事。
但是,无论阪神虎的排名有了变动也好,还是书房变得整洁了,博士的生活始终丝毫不变。只有一个不能算是例外的例外,那就是,在两天不到的时间里,前保姆的努力便成了泡影,书房回复到了令人怀念的原先的那幅景象。
我把博士那天放到餐桌正中央的那张便条,珍而重之地收藏了起来。值得庆幸的是,当我伸手去拿时,得到了老太太的默许。我小心翼翼地把它折好,收进了放有平方根照片的皮夹里。
为了理解上面写着的算式的涵义,我去了镇上的图书馆。虽然只要向博士请教,他马上就能告诉我,但我不打算那样做,因为我有一种预感,感到独自与这道算式面对面好好交流,或许能够更加深入地理解它所蕴藏的涵义。这纯粹只是预感,毫无根据的。在与博士短短的交往过程中,面对数字和符号,不知不觉中,我也能够发挥像对音乐和小说一样的想象力了。这道简短之极的算式,拥有不容见弃的分量。
再度迈进图书馆的大门还是去年暑假以来的第一次,上回是为了平方根的自由研究作业来借有关恐龙的图书。数学角位于二楼东侧,在最靠里的地方。除我之外不见任何人影,寂寂无声。
博士书房里的书每一本都残留着博士手摸过的某种痕迹,不是沾着手垢,就是书页折了起来,再就是夹着食物碎屑。但图书馆的书却整洁得过了头,令人越发感到难以接近。我感到这里面必定有好些数学书终其一生都将不会被任何人的手打开。
书 包 网 txt小说上传分享
《博士的爱情算式》第三部分(19)
我从皮夹里取出了便条。
eπi+1=0
还是博士平常的笔迹。整体带着圆溜溜的感觉,铅笔印子断断续续,可却未给人凌乱的印象,相反地,符号的形状和0的接合处使人感觉到一种郑重。和纸张面积相比,算式显得偏小,它谦卑地静静呆在正中央稍稍靠上的地方。
重新仔仔细细审视,就发现这式子不同寻常。譬如,长方形的面积等于长乘以宽,直角三角形斜边的平方,等于其余两边的平方之和,等等。与这些我所知道的为数不多的公式相比,它出奇地不平衡。出现的数字只有1和0,运算方法也只有加法一种,固然是简洁之极,但头上的符号怎么看都觉得头重脚轻。这一头重,最终由一个0来将它支撑了起来。
但是,说是查资料,却想不出该以什么为线索。无奈之下,只好随手抽出手边的几本哗啦哗啦地翻起来。
这一本那一本,这一页那一页,除了数学还是数学。简直难以置信,这些竟是与自己同样的人类所共同拥有的。这里的一页一页,可以揭开宇宙奥秘的设计图?可以抄写的上帝的记事本里的东西?
在我想象当中,宇宙的造物主,是在某个遥远的天边编织着蕾丝。那是能够透过无论何等微弱的光线的、用上等丝线织就的蕾丝。图案仅只存在于造物主脑中,任谁都无法窃取图样,他们也无法预测下一个出现的纹样。织针永不停歇,蕾丝无限延伸,随风起伏、轻轻摇摆。令人禁不住要拿在手里放到光下细细赏玩。还要眼里噙着泪水,如痴如醉地把它贴在脸颊上摩挲。还要祈求上苍,恳求他允许我们想办法用自己的语言重新编织业已编好的纹样。哪怕一点点的边脚也好,求他应允我将它转编成自己独有的东西,带回地上。
蓦地,一本论述费马大定理的书跃入眼帘。内容与其说是数学书,倒不如说更像是历史读物,因此我也能够理解到某种程度。我知道费马大定理是一个尚未解决的难题,可我着实大吃一惊:不曾想定理的内容表达得简洁至此。
当Xn+Yn=Zn,n是大于2的自然数时没有正整数解。
哎?就这么一点点?我忍不住要说出来。我感到满足算式的自然数要多少有多少。假设n等于2,那就是完美的毕达哥拉斯定理。难道n仅大1,就会破坏秩序?根据站着时粗粗翻看所得,这道命题并非来自于一片精彩的论文,而是费马匆匆写就的,费马本人以纸张
本章未完,点击下一页继续。