第25章 量子纠缠(第1/4 页)
一、量子纠缠的神秘面纱
量子纠缠是量子力学中极为神秘的现象之一。当两个或多个量子系统处于纠缠状态时,它们之间会建立起一种特殊的关联,这种关联超越了我们在经典物理学中所理解的范畴。
在量子纠缠中,一个粒子的状态发生改变,无论它们相距多么遥远,另一个粒子的状态会立即发生相应的变化。这种瞬间的影响似乎无视了时间和空间的限制,给人一种 “幽灵般的超距作用” 之感。
例如,当两个相互纠缠的粒子被分开后,对其中一个粒子进行测量,若测得其处于某种特定状态,那么另一个粒子也会瞬间确定为与之相对应的状态。这种现象让人难以理解,因为在经典物理学中,信息的传递是不可能超过光速的。
量子纠缠的这种特性引发了许多科学家的深入思考和研究。阿尔伯特?爱因斯坦、be 波多尔斯基和 n 罗森在 1935 年发表的论文中,对量子力学的完备性提出了质疑,他们认为量子纠缠这种现象似乎违背了经典的物理实在论。埃尔温?薛定谔在研究这一佯谬时提出了 epr 操控的概念,进一步加深了人们对量子纠缠的认识。
目前,量子纠缠现象已经在微观粒子如光子、电子,以及介观粒子如分子、巴克明斯特富勒烯甚至小钻石等中被观察到。根据目前实验显示,量子纠缠的作用速度至少比光速快 10,000 倍,这还只是速度下限。虽然量子纠缠的效应不能被用来以超光速传输经典信息,并不违反因果律,但它仍然挑战着我们对物理世界的传统认知。
二、量子纠缠的研究历史
(一)epr 佯谬的提出
1935 年,爱因斯坦、波多尔斯基和罗森发表了题为《能认为量子力学对物理实在的描述是完全的吗》的论文,提出了 epr 佯谬。他们设计了一个思想实验,考虑两个曾经相互作用过的粒子,无论相距多远,始终遥相 “呼应”。比如两个自旋方向相反的电子,即使它们分别位于银河系两侧,只要一个自旋方向发生改变,另一个也同时随之改变。他们认为对一个粒子的测量不会对第二个粒子造成干扰,并给出一个判据:如果人们毫不干扰一个体系而能确定地预言它的一个物理量的值,则对应于这个物理量就存在物理实在性的一个元素。根据这个判据,他们指出量子力学认为粒子的坐标和动量不能同时具有确定值,因此它的描述是不完备的。
(二)薛定谔的贡献
薛定谔在研究 epr 佯谬时提出了 epr 操控的概念,并且创造了 “antu entanglent”(量子纠缠)这一术语。薛定谔进一步表明量子纠缠是量子理论的特征性质。他通过 “薛定谔的猫” 这一着名的思想实验,生动地展示了量子力学中叠加态和量子纠缠的奇特性质。在这个实验中,一只猫被关在一个装有少量镭和氰化物的密闭容器里。镭的衰变是随机的,如果衰变发生,氰化物将被释放并杀死猫;如果未衰变,则猫将存活。由于我们无法确定镭是否衰变,因此在观测之前,猫的状态是既死又活的叠加态,而与猫的状态相关的微观粒子之间也处于量子纠缠状态。薛定谔的这些贡献进一步加深了人们对量子纠缠的认识和理解。
三、量子纠缠的原理探讨
(一)基于量子态叠加与量子态塌缩的原理
量子纠缠基于量子力学中的量子态叠加与量子态塌缩原理。在量子力学中,一个粒子的状态可以同时处于多种状态之间,这就是量子态叠加。例如,光子在没有被观测之前,其自旋可以同时沿着不同的方向,处于多种自旋状态的叠加。而当我们观测一个粒子时,它的状态只被压缩到一个确定的状态,这被称为量子态塌缩。当两个量子系统在量子态叠加时相互作用,它们的状态被锁定在一起,形成量子纠缠。这种纠缠不受距离、时间或任何其他因素的影响,而是通过一种看似瞬间的过程来实现。
(二)超光速特性
量子纠缠最为人称奇的特点在于其状态变化的瞬时性,这表明了在量子尺度上,信息的传递似乎不受光速限制。当两个或多个量子粒子发生纠缠时,它们形成了一种特殊的关联,不论彼此相距多远,一个粒子的状态发生变化时,与其纠缠的粒子状态也会同步改变。这种现象被科学家们形象地描述为 “量子非局域性”,它意味着量子纠缠可以超越空间的界限,实现超光速传递。根据目前实验显示,量子纠缠的作用速度至少比光速快 10,000 倍,这还只是速度下限。然而,目前科学界普遍认为,量子